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Exact Calculations of Fluid-Phase Equilibria 
by Monte Carlo Simulation in a 
New Statistical Ensemble t 

A. Z. Panagiotopoulos 2 

A recently proposed method, Monte Carlo simulation in the Gibbs ensemble, 
allows the prediction of phase equilibria from knowledge of the intermolecular 
forces. A single computer experiment is required per coexistence point for a 
system with an arbitrary number of components. The new technique has signifi- 
cant advantages relative to free-energy methods that have been used for phase 
equilibrium calculations is the past. In this work, a variation of the Gibbs 
method appropriate for calculations in mixtures with large differences in 
molecular size is developed. The method is applied for the calculation of high- 
pressure phase equilibria in two mixtures of simple monatomic fluids, the 
systems argon-krypton and neon-xenon. Pairwise additive potential functions 
of the Lennardqones type are used to describe the intermolecular interactions. 
Agreement with experimental results is generally good over a wide range of tem- 
peratures and pressures, including the fluid-fluid immiscibility region for the 
neon-xenon system. Results from the Van der Waals one-fluid theory are com- 
pared with experimental data and computer simulation predictions. Agreement 
is excellent for the mixture with small differences in size (argon-krypton), but 
the theory fails to describe the coexistence curve for the highly asymmetric 
system neon-xenon. 

KEY WORDS: computer simulation; intermolecular potential functions; 
Lennard-Jones; Monte Carlo; phase equilibria; vapor-liquid equilibria. 

1. I N T R O D U C T I O N  

C o m p u t e r  s i m u l a t i o n  t e chn iques  h a v e  been  used  since the i r  i n c e p t i o n  for 

ca l cu l a t i ng  bas ic  t h e r m o d y n a m i c  and  s t ruc tu ra l  p rope r t i e s  of  l iqu ids  [ 1 ] .  

In  recent  years,  efforts  h a v e  been  d i rec ted  t o w a r d  i m p r o v i n g  c o m p u t e r  
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simulation techniques for the estimation of free energies [2], with a 
primary goal being the prediction of phase equilibria. Several successful 
predictions of the phase equilibrium properties of mixtures have been 
reported for atomic and molecular fluids [3, 4] using the Widom test par- 
ticle method [5]. The computer time requirements for these calculations 
are high because of the need to perform a large number of simulations at 
different densities and compositions. The number of simulations needed 
increases rapidly with the number of components in a mixture. 

The Gibbs-ensemble Monte Carlo simulation method [6] offers 
significant improvements relative to free-energy calculation methods. The 
method involves performing a simulation in two distinct, coupled regions 
with generally different densities and compositions, in a way that ensures 
that the criteria for phase equilibrium, equality of temperature, pressure, 
and chemical potentials of all components in the two phases, are satisfied 
in a statistical sense. The method has been used to predict vapor-liquid, 
liquid-liquid, and osmotic equilibria for binary Lennard-Jones mixtures 
[7], phase transitions for fluids in pores E8], and equilibria for quadru- 
polar fluids [9]. 

The central theme of this paper is the calculation of phase equilibria 
in real fluid mixtures using the Gibbs method. Specific objectives include 
(a) development of techniques that expand the range of validity of the 
Gibbs method to systems with large differences in component size, 
(b) testing of simple, pairwise additive intermolecular potential functions 
for their ability to represent phase equilibrium data of real fluid mixtures, and 
(c) comparisons of the simulation results with commonly used engineering 
and theoretical models. In Section 2, we give some background information 
on the Gibbs method and present a modification necessary for handling 
mixtures with large differences in molecular size. In Section 3, we describe 
the potentials used to model the intermolecular interactions in the systems 
studied. The results and comparison with experimental data and theoretical 
predictions from the Van der Waals one-fluid theory are presented in 
Section 4, and the conclusions from the present work are summarized in 
Section 5. 

2. THE GIBBS M E T H O D  

2.1. Basic Concept 

The methodology for determination of phase equilibria in mixtures 
using the Gibbs method has been previously described in detail for pure 
fluids [-61 and mixtures [7]. The method involves setting up a Monte 
Carlo simulation in a two-region system. The two regions are not in physi- 
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cal contact (therefore, no interfaces are present). Conventional spatially 
periodic boundary conditions are applied for each region separately. 
Three types of perturbations are performed: (a) random displacement steps 
in each region separately, to ensure equilibration within each region; 
(b) concerted changes in the volumes of the two regions that result in 
equality of the average pressure; and (c) random transfers of molecules 
from one to the other region of the simulation that result in equality of the 
chemical potential of all components present in the two regions. 

The primary advantage of this method over previously available 
techniques based on the calculation of free energies is the ability to deter- 
mine coexistence properties for a system with an arbitrary number of 
components from a single computer experiment. 

2.2. Extension for Mixtures with Large Differences in Molecular Size 

For pure fluids and simple mixtures, the Gibbs methodology as 
described in Refs. 6 and 7 works well even for densities close to the triple- 
point liquid densities. However, for mixtures with components that have 
large differences in molecular size, the method fails at high densities, 
because most attempts to transfer a molecule of the large species into a 
densely packed liquid are unsuccessful. The system neon-xenon that we 
attempt to model in this work is an example of a highly asymmetric 
mixture, with a volume ratio of the two components 3 3 ( a x e / a N e  = 2.7). For 
such systems, a modification of the Gibbs methodology can be implemen- 
ted to increase significantly the range of liquid densities that can be 
covered. 

Figure 1 gives a schematic representation of the modification to the 
Gibbs methodology for highly asymmetric mixtures. The modification 
affects only the particle transfer step. Let us designate the component with 
the smallest size in a binary mixture component 2. Component 1 has a 
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Schematic illustration of the exchange step for highly asymmetric mixtures. 
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significantly larger size, and therefore it is difficult to obtain successful 
transfers of this component between regions. In the modified method, direct 
transfers between the two regions are attempted only for component 2. For 
component 1, the transfer step involves the following: in one of the two 
regions, a randomly selected particle of species 2 becomes a particle of 
species 1. At the same time, the inverse procedure is applied to the other 
region: a randomly selected particle of species 1 become a particle of 
species 2. The move is accepted with a probability: 

Pexchange=min 1, exp --~ AE~+AEU+kTln VINIII 

+ kTln VnNI 

The following conditions between the chemical potentials of the two 
components in the two regions are then satisfied in a statistical sense: 

#~ = #~ (from transfer step) 
(2) 

#~ - #] = #~ - #]~ (from exchange step) 

which are sufficient to ensure the equality of chemical potentials of all 
components in the two phases. The method can be easily generalized for 
systems with more than two components. 

The advantage of the proposed modification is that it is much more 
efficient to attempt to increase the size of an existing molecule than to 
attempt to place a molecule at a completely random position. In this 
respect the proposed modification is similar to the semi-grand ensemble 
Monte Carlo simulation technique [10]. Tests of the proposed modifica- 
tion for results obtained with the original Gibbs methodology [-6] and the 
conventional Widom method 1-5] demonstrated that the new method gives 
results statistically indistinguishable from the old. For the mixture neon- 
xenon at high pressures ( P =  4000 bar), the success ratio for the exchange 
attempts for xenon is two orders of magnitude higher than the correspond- 
ing ratio for the transfer attempts. 

3. INTERMOLECULAR POTENTIALS 

For modeling the intermolecular interactions in the systems of interest, 
we chose to use intermolecular potential of the Lennard-Jones (6, 12) type. 
We chose to use LJ potentials rather than more realistic intermolecular 
potentials for the rare gases determined from gas-phase and spectroscopic 
data [-11] for the following reasons. 
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(a) Real fluids do not obey the assumption of pairwise additivity of 
potentials. At least three-body (and possibly higher-order) terms 
are required for an accurate description of the thermodynamics 
properties of rare gas liquids. The pair potentials determined 
from gas-phase properties are known to give a worse representa- 
tion of the liquid state properties than effective pairwise additive 
potentials of the LJ type [11]. The best modern pair potentials, 
augmented with the Axilrod-Teller three-body interactions and 
quantum corrections, give results for the liquid structure that are 
equally close to the experimental results as the pairwise additive 
effective potentials [-12]. One objective of this study is to deter- 
mine whether pairwise additive potentials can be obtained that 
give a good representation of the phase equilibrium properties 
over a wide range of temperatures and pressures. There are 
significant computational advantages in utilizing effective two- 
body, rather than three-body potentials, despite the inevitable 
loss of accuracy in the prediction of some properties. 

(b) One of the goals of this study is to provide data for well-defined 
model systems that can be used for the testing and development 
of theories for equations of state and mixing rules. There is a 
corresponding requirement that the model systems need to be 
simple. The LJ potentials satisfy this requirement, and a large 
amount of simulation results exists that can be used for develop- 
ment of theoretical models [13, 14]. 

The potential parameters for the pure fluids were selected to optimize 
the representation of the phase equilibrium properties and are, thus, 
slightly different from those determined from gas-phase values available in 
standard compilations [-15]. The potential parameters used in this work 
are shown in Table I. 

Table I. Potential Parameters 

eiJk as, 
Component pair (K) ~ij(~a~jj) 1/2 ( ~ ) 2a ~/( a ii + a 2/) 

Argon-argon 117.5 3.390 
Argon-krypton 135.4 0.984 3.505 1.002 
Krypton-krypton 161.0 3.607 

Neon-neon 34.3 2.81 
Neon-xenon 60.7 0.688 3.47 
Xenon-xenon 227. 3.91 

1.033 

840/10/2-11 
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To obtain the mixture combination parameters, a common choice is 
the Lorenz-Berthelot rules, 

gij = (~ii~jj)  1/2 (3)  

aii+ ajj (4) 
% -  2 

For the system argon-krypton, with relatively small differences in size 
and interaction energy parameters between the two components, these 
rules provide a reasonably good description of the phase equilibrium 
properties of the mixture. In this study we used parameters determined 
from a slightly more complicated set of combining rules [16], 

6 6 
e~o',~jjj~i~j (5) e,).a 6.=2 . 6 2 6 2 

F, iilT iiO~j "~ ~j j f f  jjO~ i 

where cq is the polarizability of species i. The polarizabilities for the com- 
ponents studied obtained from [17]. 

For the highly asymmetric neon-xenon system, neither set of combin- 
ing rules gave a satisfactory representation of the properties of the mixture. 
Instead, we used the experimentally determined value for the energy cross 
interaction parameter for this system, from measurements of the cross 
second virial coefficient [18]. For the parameter aN~ Xe, there is con- 
siderable uncertainty in the experimentally determined value. Preliminary 
calculations indicated that the calculated phase diagram at high pressures 
is significantly influenced by small changes in aNe-Xe. To obtain an estimate 
for this parameter, we adjusted its value starting from the value given by 
Eqs. (5) and (6), so as to obtain reasonable agreement for the calculated 
compositions at a single point (T=  223 K, P =  900 bar). There has been a 
previous study by simulation of the neon-xenon system [19]. The 
parameters used here are similar, but not identical, to the parameters 
obtained in Ref. 19 by fitting pure-component and mixture parameters to 
volumetric and phase equilibrium data at high pressures. 

In addition to the values of the potential parameters, Table I presents 
the ratios of the cross interaction parameters for the systems studied to the 
values resulting from the Lorentz Berthelot rules. For the argon-krypton 
system, these ratios are very close to unity, while for neon xenon the cross 
interaction parameters deviate significantly from the values predicted from 
the Lorentz-Berthelot rules. 
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4. RESULTS AND D I S C U S S I O N  

A number of simulations for the two mixtures studied were performed. 
The simulation results included densities, compositions, and chemical 
potentials of all components for the coexisting phases. The results for the 
phase diagrams are compared with experimental results in Figs. 2-4. 

The calculated phase diagrams as a function of temperature for the 
system argon-krypton  are shown in Fig. 2. The agreement between the 
Monte Carlo simulations and the experimental results [20] is excellent for 
all temperatures. Small deviations occur for the near-critical region for the 
highest temperature studied (T= 193.15 K). Also shown in Fig. 2 are 
results from the Van der Waals one-fluid theory. For  the theoretical 
calculations, an accurate equation of state for argon [21] was used to 
determine the reference-fluid properties. Agreement between theoretical and 
experimental results is also excellent, a result of the fact that the a rgon-  
krypton mixture is very close to ideal. 

Figure 3 presents the phase diagram for the neon-xenon mixture at 
pressures below 1000 bar as obtained from Gibbs-ensemble simulations 
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Fig. 2. Pressure~omposition diagram for the system argon 
krypton. ([]) Experimental data [20]; (O) Gibbs-ensemble 
Monte Carlo simulations from this work. The horizontal lines 
through the simulation points represent the estimated uncer- 
tainty in the composition. ( ) Theoretical predictions from 
the Van der Waals one-fluid theory, using the potential 
parameters in Table I and an equation of state of argon [21] 
as a reference. 
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Fig. 3. Pressure-composition diagram for the system neon-  
xenon. Upper diagram, T=223.15 K; lower diagram, 
T =  273.15 K. Symbols are as in Fig. 2. Experimental data are 
from Ref. 18. 

and experiment [18]. The high-pressure points at T= 223.15 K were used 
in fitting the cross interaction parameter ~Ar-Kr, and therefore the agree- 
ment for the calculated compositions at that point is forced. However, 
there is also excellent agreement between Monte Carlo simulation and 
experimental results for the other points on the same isotherm. For the 
273 K isotherm, there is only qualitative agreement between experiment 
and simulation. This is not entirely unexpected, as the potential model used 
is not an exact representation of the intermolecular forces of the system in 
question. Moreover, the temperature range around 273 K is a region where 
the coexistence pressure for the system is changing very rapidly with tem- 
perature [ 18]. Small differences between actual and model intermolecular 
potentials would be magnified in that region. 
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Fig. 4. Fluid-fluid immiscibility curve for the system xenon-neon at 
P = 4000 bar. Symbols are as in Fig. 2. Experimental data are from 
Ref. 24. 

The Van der Waals one-fluid theory based on the equation of state for 
argon and using the same potential parameters as the Monte Carlo results 
fails to represent even approximately the phase diagram for the system. 
This disagreement is to be expected, given that previous studies [22, 23] 
have convincingly demonstrated the failure of the Van der Waals one-fluid 
theory for mixtures of molecules with large differences in size. It would be 
interesting to compare the results from the current simulation with modern 
perturbation theories [17] that are known to perform better for mixtures 
of molecules with large size differences. One possible difficulty for the 
application of perturbation theory to the neon-xenon mixture is that, in 
addition to large size differences, there are also significant deviations from 
the additivity (Lorenz) combining rule for the size parameter, and therefore 
the common additive-diameter hard-sphere reference system may not be 
adequately close to the system under study. 

The results from the simulations for the phase diagram of the neon- 
xenon system at a much higher pressure (P = 4000 bar) are presented in 
Fig. 4. Experimental data are from Ref. 24. A surprisingly good agreement 
is found between simulation and experimental results. This is a significant 
finding: it appears that even with approximate pairwise additive potential 
models, very good agreement can be obtained for phase equilibrium results 
at very high pressures. 
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5. CONCLUSIONS 

In this work, a new technique is developed that significantly extends 
the range of validity of the Gibbs technique in the case of a mixture with 
components differing greatly in size. Phase equilibria for two simple 
mixtures, Ar/Kr and Ne/Xe, are modeled using intermolecular potential 
functions of the LJ type. The first mixture is close to ideal and has a type I 
phase diagram. The second mixture has a type lII phase diagram, with a 
fluid-fluid immiscibility region. For both mixtures, a description of the 
experimental results using pairwise additive LJ potentials is possible. 

Available semiempirical and theoretical techniques for modeling the 
excess free energy for simple mixtures are adequate for mixtures with small 
differences in size but fail when the components of a mixture are 
significantly different. Data from the current study for mixtures with 
precisely defined intermolecular forces can be used for testing new mixing 
and combining rules. 
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